
L-FUNCTIONS ASSOCIATED TO MODULAR FORMS

SANYAM GUPTA

Abstract. Modular forms are classical entities found across various
mathematical domains like number theory, representation theory, and
mathematical physics, have gained prominence for their pivotal role in
mathematics. Notably, they played a crucial part in proving Fermat’s
Last Theorem by affirming the Shimura-Taniyama-Weil conjecture, link-
ing modular forms to elliptic curves. Moreover, a significant link between
modular forms and arithmetic lies in L-functions, with the Riemann ζ-
function serving as a fundamental example. This exposition focuses on
studying L-functions associated with modular forms. Beginning with the
theory of Hecke operators as outlined in §3.1− 3.5 of [4], we progress to
analyzing the convergence criteria for these L-functions. Subsequently,
drawing from §3.6 of [4], we establish an Euler product representation
using Hecke operators. Our ultimate goal is to develop analytic contin-
uations and functional equations for these L-functions.
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1. Double coset operators

Let Γ be a congruence subgroup of SL2(Z) and k be an integer, then we
denote the space of modular forms of weight k with respect to Γ by Mk(Γ),
and the cusp forms by Sk(Γ).
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For any congruence subgroups Γ1 and Γ2 of SL2(Z), a set of double coset
operators maps Mk(Γ1) to Mk(Γ2), preserving cusp forms. These operators
are linear.

Example 1.1. In the case where Γ1 = Γ2 = Γ1(N), specific double coset
operators ⟨n⟩ and Tn for all n ∈ Z+ are the Hecke operators, commuting
endomorphisms of the vector space Mk(Γ1(N)) and the subspace Sk(Γ1(N)).

Let α ∈ GL+
2 (Q), then the set Γ1αΓ2 = {γ1αγ2 : γi ∈ Γi, i = 1, 2} is a double

coset in GL+
2 (Q). The group Γ1 acts on the double coset Γ1αΓ2 by left

multiplication, partitioning it into orbits. An orbit it Γ1β with β = γ1αγ2,
and the orbit space Γ1\Γ1αΓ2 is a disjoint union ⊔Γ1βj for some choice of
orbit representatives βj . In fact, this union is finite as shown by next two
lemmas.

Lemma 1. Let Γ be a congruence subgroup of SL2(Z) and let α be an element
of GL+

2 (Q). Then α−1Γα∩SL2(Z) is also a congruence subgroup of SL2(Z).

Proof. Lemma 5.1.1. in [1]. ■

Lemma 2. Let Γ1 and Γ2 be congruence subgroups of SL2(Z), and let α be
an element of GL+

2 (Q). Define Γ3 = α−1Γ1α ∩ Γ2, a subgroup of Γ2. Then
left multiplication by α,

Γ2 → Γ1αΓ2, γ2 7→ αγ2,

induces a natural bijection from the coset space Γ3\Γ2 to the orbit space
Γ1\Γ1αΓ2. In simpler terms, the set {γ2,j} is a set of coset representatives
for Γ3\Γ2 if and only if the set {βj} = {αγ2,j} is a set of orbit representatives
for Γ1\Γ1αΓ2.

Proof. Lemma 5.1.2. in [1]. ■

We know that any two congruence subgroups Γ1 and Γ2 of SL2(Z) are com-
mensurable: the indices [Γ1 : Γ1 ∩ Γ2] and [Γ2 : Γ1 ∩ Γ2] are finite. Since,
α−1Γα∩SL2(Z) is a congrunce subgroup, the coset space Γ3\Γ2 is finite and
hence so is the orbit space Γ1\Γ1αΓ2.

Let α =

(
a b
c d

)
∈ GL+

2 (Q) and k ∈ Z, the weight-k α operator on functions

f : H → C is given by

(f [α]k)(z) = (detα)k−1j(α, z)−kf(α(z)), z ∈ H.

where

j(α, z) = cz + d, α(z) =
az + b

cz + d
.
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Definition 1. For congruence subgroups Γ1 and Γ2 of SL2(Z) and α ∈
GL+

2 (Q), the weight-k Γ1αΓ2 operator maps functions f ∈ Mk(Γ1) to

f [Γ1αΓ2]k = (detα)k/2−1
∑
j

f [βj ]k

where {βj} are orbit representatives, meaning Γ1αΓ2 =
⋃
j Γ1βj is a disjoint

union.

Proposition 3. The double coset operator is well defined: it does not depend
on the choice of the orbit reprsentatives βj. The weight-k Γ1αΓ2 operator
takes f ∈ Mk(Γ1) to f [Γ1αΓ2]k ∈ Mk(Γ2). In particular, if f is a cup form
then f [Γ1αΓ2]k is also a cusp form.

Proof. We need to show that f [Γ1αΓ2]k is Γ2-invariant and is holomorphic
at the cusps. To demonstrate invariance, observe that any γ2 ∈ Γ2 permutes
the orbit space Γ1\Γ1αΓ2 by right multiplication. In other words, the map
γ2 : Γ1\Γ1αΓ2 → Γ1\Γ1αΓ2 defined by Γ1β 7→ Γ1βγ2 is well-defined and
bijective. Thus, if {βj} is a set of orbit representatives for Γ1\Γ1αΓ2, then
{βjγ2} is also a set of orbit representatives. Thus

(f [Γ1αΓ2]k)[γ2]k = (detα)k/2−1
∑
j

f [βjγ2]k = f [Γ1αΓ2]k.

■

Special cases of the double coset operator [Γ1αΓ2]k arise when:

(1) Γ1 contains Γ2. Taking α = I makes the double coset operator
f [Γ1αΓ2]k = f , representing the natural inclusion of the subspace
Mk(Γ1) in Mk(Γ2), an injection.

(2) α−1Γ1α = Γ2. Here, the double coset operator is f [Γ1αΓ2]k = f [α]k,
representing the natural translation from Mk(Γ1) to Mk(Γ2), an iso-
morphism.

(3) Γ1 is a subset of Γ2. Taking α = I and letting {γ2,j} be a set
of coset representatives for Γ1\Γ2 makes the double coset operator
f [Γ1αΓ2]k =

∑
j f [γ2,j ]k, the natural trace map that projectsMk(Γ1)

onto its subspace Mk(Γ2) by symmetrizing over the quotient, a sur-
jection.

2. The ⟨n⟩ and Tn operators

Fix N ∈ N. Let S+ be an additive subgroup of Z, i.e., S+ = MZ for some
integer M . Let S× be a multiplicative subgroup of (Z/NZ)×. We shall also
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use S× to indicate the pre-image of S× under the natural map Z → S×. Let

Xn = Xn(N,S
×, S+)

=

{(
a b
c d

)
∈M(2,Z) : ad− bc = n,N |c, a ∈ S, b ∈ S+

}
.

Example 2.1. The standard Hecke congruence subgroups can all be written
in this form:

Γ1(N) = X1(N, 1,Z)
Γ(N) = X1(N, 1, NZ)
Γ0(N) = X1(N, (Z/NZ)×,Z).

Lemma 4. X1(N,S
×, S+) is a congruence subgroup of SL2(Z).

Proof. Clearly if S+ =MZ, then

Γ(MN) ⊂ X1(N, 1, S
+) ⊂ X1(N,S

×, S+).

■

Lemma 5. The set Xn = Xn(N,S
×, S+) is invariant under left and right

action of X1. Furthermore, we have

| X1(N,S
×, S+)\Xn(N,S

×, S+) |<∞.

Proof. See page 9 in [2]. ■

Thus there is a finite set of orbit representatives αi ∈ Xn such that

Xn =
⊔
i

X1αi.

Moreover, multiplying the orbits on the right by any fixed γ ∈ X1 simply
permutes the orbits:

⊔
iX1αiγ =

⊔
iX1αi.

Definition 2. Define the n-th Hecke operator on Mk(X1) as the map which
sends f ∈Mk(X1) to the finite sum

(1) Tn(f) := n
k
2
−1
∑
i

f [αi]k.

Remark. The way we have defined the operators Tn is taken from [2] and is
different than the defintion given by Shimura (page 70 of [4]), however both
are equivalent.

Theorem 6. Consider the group Γ = X1(N,S
×, S+) as described above.

For any k, n ≥ 1, the Hecke operator defined in equation 1 is a linear map
from Mk(Γ) to Mk(Γ) and from Sk(Γ) to Sk(Γ).
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Proof. Suppose f ∈ Mk(Γ) and γ ∈ Γ. Then for any αi, since f |γαi = f |αi,
we see that the map does not depend on the choice of orbit representatives
and is thus well-defined. Moreover,

Tn(f)[γ]k =

nk/2−1
∑
i

f [αi]k

 [γi]k

= nk/2−1
∑
i

f [αiγ]k

= Tn(f)

where the final equality follows from the fact that γ simply permutes the
orbits. We know that for any α ∈ GL(2,Q)+, f [α]k is holomorphic at every
cusp, and hence Tn(f) is also holomorphic at every cusp. Thus, Tn(f) ∈
Mk(Γ), furthermore if f ∈ Sk(Γ), then the constant coefficient in the Fourier
expansion of f [α]k is 0. Therefore, Tn(f) ∈ Sk(Γ). ■

We can give an explicit description in the case of Γ = Γ1(N) = X1(N, 1,Z).
From now onwards, for each a ∈ (Z/NZ)×, we fix σa ∈ SL2(Z) such that

σa ≡
(
a−1 0
0 a

)
(mod N),

where a−1 denotes the multiplicative inverse of a (mod N).

Theorem 7. We have the following decompostion of Xn = Xn(N, 1,Z)

Xn =
⊔
ad=n
a>0

(a,N)=1

d−1⊔
b=0

Γ1(N)σa

(
a b
0 d

)
,

where the first disjoint union is taken over all positive integers a dividing n
that are coprime to N .

Proof. See Theorem 8.1.7. in [2]. ■

Corollary 7.1. For a prime p

Xp(N, 1,Z) =
p−1⊔
b=0

Γ1(N)

(
1 b
0 p

)
(p | N),

and

Xp(N, 1,Z) =
p−1⊔
b=0

Γ1(N)

(
1 b
0 p

)⊔
Γ1(N)

(
m n
N p

)(
p 0
0 1

)
(p ∤ N).
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Corollary 7.2. For (n,N) = 1, we have an explicit description of Tn

Tn(f) = n
k
2
−1
∑
ad=n
a>0

d−1∑
b=0

f

[
σa

(
a b
0 d

)]
k

where
(
m n
N p

)
∈ SL2(Z)

Remark. It is easy to see that for a prime p we have the following equality.

Xp(N, 1,Z) = Γ1(N)

(
1 0
0 p

)
Γ1(N).

Thus the definition of Hecke operators given in [1] coincides with the one
given here.

Now we define another type of Hecke operator called the diamond operator.
The mapping Γ0(N) → (Z/NZ)∗, which sends a/b to d (mod N), is a sur-
jective homomorphism with kernel Γ1(N). This demonstrates that Γ1(N) is
a normal subgroup of Γ0(N) and induces an isomorphism

Γ0(N)/Γ1(N)
∼−→ (Z/NZ)∗,

(
a b
c d

)
7→ d (mod N).

Take any α ∈ Γ0(N), set Γ1 = Γ2 = Γ1(N), and consider the weight k double
coset operator [Γ1αΓ2]k. Since, Γ1(N)◁ Γ0(N), this operator is the special
case (2) from §1, taking a modular form f ∈ Mk(Γ1(N)) to

f [Γ1(N)αΓ1(N)]k = f [α]k, α ∈ Γ0(N),

again in Mk(Γ1(N)). Hence, the group Γ0(N) acts on Mk(Γ1(N)), and as
its subgroup Γ1(N) acts trivially, this constitutes an action of the quotient
(Z/NZ)∗. The action of α =

(
a b
c d

)
, determined by d (mod N) and denoted

⟨d⟩, is
⟨d⟩ :Mk(Γ1(N)) →Mk(Γ1(N))

gievn by ⟨d⟩f = f [α]k for any α =
(
a b
c δ

)
∈ Γ0(N) with δ ≡ d (mod N).

We observe that σd where d varies in (Z/NZ)∗ is a set of representatives of
Γ0/Γ1. Thus we can give the following definition:

Definition 3. For each d ∈ (Z/NZ)×, define the diamond operator ⟨d⟩ on
Mk(Γ1(N)) as ⟨d⟩f = f [σd]k.

2.1. Nebentypus. For any Dirichlet character χ modulo N , we define the
following vector subspace of Mk(Γ1(N)):

Mk(N,χ) := {f ∈Mk(Γ1(N)) : f [γ]k = χ(d)f, for all γ ∈ Γ0(N)}.
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Where, d is the lower right entry of Γ =

(
a b
c d

)
. In particular, if χ is the

trivial character, then Mk(N,χ) =Mk(Γ0(N)). It is also clear that we have
the following equality

Mk(N,χ) := {f ∈Mk(Γ1(N)) : ⟨d⟩f = χ(d)f, for all d ∈ (Z/NZ)×}.

Theorem 8. We have the following decompositions

Mk(Γ1(N)) =
⊕
χ

Mk(N,χ),

Sk(Γ1(N)) =
⊕
χ

Sk(N,χ),

where the direct sum is over all Dirichlet characters modulo N .

Proof. This is a standard result from representation theory of finite groups.
However, we present an elementary argument. We first show that every
f ∈ Mk(Γ1(N)) can be written as a sum of functions fχ ∈ Mk(N,χ). Let

fχ =
1

ϕ(N)

∑
d∈(Z/NZ)∗

χ(d)f [σd]k,

where σd ∈ Γ0(N) is as above. This well-defined since f ∈ Mk(Γ1(N)).
Indeed, fχ ∈ Mk(N,χ). For any a ∈ (Z/NZ)∗, we have

fχ[σa]k =
1

ϕ(N)

∑
d∈(Z/NZ)∗

χ(d)f [σd]k[σa]k

=
1

ϕ(N)

∑
d∈(Z/NZ)∗

χ(d)f [σdσa]k

=
1

ϕ(N)

∑
d∈(Z/NZ)∗

χ(da)χ(a)f [σdσa]k.

Now as d runs through coprime residue classes modulo N , so does da. We
deduce that

fχ[σa]k = χ(a)fχ.

Moreover, fχ is holomorphic at all cusps because f [σd]k is. Therefore, fχ ∈
Mk(N,χ). Now

∑
χ

fχ =
∑

d∈(Z/NZ)∗

 1

ϕ(N)

∑
χ

χ(d)

 ,

where the inner sum is 0, unless d = 1, in which case it is 1, so that

f =
∑
χ

fχ.
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We now show that the sum is direct, let g ∈ Mk(N,ψ). For any character
χ, we compute

gχ =

 1

ϕ(N)

∑
χ

ψχ(d)

 g =

{
g if χ = ψ

0 otherwise.

In particular, if
g ∈ Mk(N,ψ) ∩

⊕
χ ̸=ψ

Mk(N,χ),

then

g = gψ =

∑
χ ̸=ψ

gχ


ψ

= 0.

This proves the first decomposition. This argument also implies the decom-
position for cusp forms, because the constant coefficient of f [σd]k is zero if
that of f . ■

Remark. Notice that Mk(N,χ) = 0 if χ has a different parity from k,
i.e., if χ(−1) ̸= (−1)k. This follows by taking γ = −I in the definition
and recalling that f [−I]k = (−1)kf.

The spaces Mk(N,χ) include many of the most important examples of mod-
ular forms, and will be our basic object of study in what follow. Let Tn be
the n-th Hecke operator of Mk(X1(N, 1,Z)) = Mk(Γ1(N)), we know that
it is of the form

Tn(f) = n
k
2
−1

∑
ad=n
a>0

(a,N)=1

d−1∑
b=0

f

[
σa

(
a b
0 d

)]
k

,

where f ∈ Mk(Γ1(N)). Suppose that f ∈ Mk(N,χ), then we have f [σa]k =
χ(a)f si that

Tn(f) = n
k
2
−1
∑
ad=n
a>0

χ(a)

d−1∑
b=0

f

[(
a b
0 d

)]
k

.

Notice that we dropped the condition that (a,N) = 1 since χ(a) = 0 if
(a,N) ̸= 1. We adopt the following notation: for any f ∈ Mk(Γ1(N)), we
write its fourier expansion as

f(z) =

∞∑
m=0

am(f)q
m.

Remark. Note that the operators ⟨d⟩ and Tn preserve the decomposition
Mk(Γ1(N)) =

⊕
χMk(N,χ). Clearly, if f ∈ Mk(N,χ), then by definition
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⟨d⟩f ∈ Mk(N,χ). Furthermore, since (⟨d⟩Tn)f = (Tn⟨d⟩)f , we see that
Tn(f) ∈ Mk(N,χ)

Theorem 9. Let f ∈ Mk(N,χ). Then

(2) am(Tn(f)) =
∑

d|(m,n)

χ(d)dk−1amn
d2

(f).

Proof. We have

Tn(f) = n
k
2
−1
∑
ad=n
a>0

χ(a)

d−1∑
b=0

f

[(
a b
0 d

)]
k

.

Now
d−1∑
b=0

f

[(
a b
0 d

)]
k

=
1

n

∑
ad=n,a>0

(n
d

)k
χ(a)

d−1∑
b=0

f
(az + b

d

)
.

We evaluate
d−1∑
b=0

f
(az + b

d

)
=

d−1∑
b=0

∞∑
m=0

am(f)e
2πm(az+b)

d

=
∞∑
m=0

d−1∑
b=0

e
2πmb

d

 am(f)e
2πmaz

d

= d

∞∑
r=0

adr(f)e
2πarz

the last equality follows since
∑d−1

b=0 e
2πmb

d = d if d | m and is 0 otherwise.
Therefore,

(Tnf)(z) =
∑
ad=n
a>0

(n
d

)k−1
χ(a)

∞∑
r=0

adr(f)e
2πarz

=
∞∑
m=0


∑
ad=n
a>0
ar=m

(n
d

)k−1
χ(a)adr(f)

 e2πmz.

This implies that

am(Tnf) =
∑

d|(m,n)

χ(d)dk−1amn
d2

(f).

■
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The following identity is at the heart of all Euler factorizations of “nice”
modular forms.

Proposition 10. The n-th Hecke operators when restricted to Mk(N,χ)
satisfy the following:

(3) TmTn =
∑

d|(n,m)

dk−1χ(d)Tmn
d2
.

In particular, when n is a prime power we have

Tpr = TpTpr−1 − pk−1χ(p)Tpr−2 , r ≥ 2.

Proof. By comparing the fourier coefficients of both sides and using the “com-
binatorial” lemma. ■

Corollary 10.1. If (m,n) = 1, then TmTn = TnTm = Tmn. Furthermore,
formally we have the following Euler product

(4)
∞∑
n=1

Tnn
−s =

∏
p|N

(1− Tpp
−s)−1 ·

∏
p∤N

(1− Tpp
−s + χ(p)pk−1−2s)−1.

Proof. The first assertion is clear from Proposition 10. Thus, formally we
have

∞∑
n=1

Tnn
−s =

∏
p

 ∞∑
r=0

Tprp
−rs

 .

We claim that ∞∑
r=0

Tprp
−rs

 · (1− Tpp
−s + χ(p)pk−1−2s) = 1,

the coefficient of p−s is clearly 0 in the above product. Furthermore, the
coefficient of p−rs for r > 1 is

Tpr − Tpr−1Tp + Tpr−2χ(p)pk−1 = 0,

from Proposition 10, which proves the claim. ■

Definition 4. A nonzero modular form f ∈ Mk(Γ1(N)) that is a com-
mon eigen-function for the Hecke operators Tn for all n ∈ Z+ is a Hecke
eigenform or simply an eigenform. The eigenform f(z) =

∑∞
n=0 an(f)q

n

is normalized when a1(f) = 1.

Proposition 11. Let f(z) =
∑∞

n=0 an(f)q
n ∈ Mk(N,χ) be an eigenform:

Tnf = λnf for λn ∈ C\{0}, then a1(f) ̸= 0 and amn(f)a1(f) = am(f)an(f)
for (m,n) = 1.
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Proof. Formula 3 says

λna1(f) = a1(Tnf) = an(f), ∀n ∈ Z+.

Thus if a1(f) = 0, then an(f) = 0 for all n so f = 0, which is not possible.
Further, for (m,n) = 1

amn(f)a1(f) = a1(Tmnf)a1(f) = λmλna1(f)
2 = am(f)an(f).

■

Proposition 12. Let f(z) =
∑∞

n=0 an(f)q
n ∈ Mk(N,χ) be an eigenform:

Tn(f) = λnf , for λn ∈ C \ {0}. Then,

(5)
∞∑
n=1

λnn
−s =

∏
p

(1− λpp
−s + χ(p)pk−1−2s)−1 (formally).

Conversely, if one has formally

(6)
∞∑
n=1

an(f)n
−s =

∏
p

(1− ap(f)p
−s + χ(p)pk−1−2s)−1,

then Tn(f) = an(f)f for all n.

Proof. For (m,n) = 1 we have λmnf = Tmnf = TmTnf = λmλnf. Thus,
λmn = λmλn. It is also clear from formula 3 that

λpr = λpλpr−1 − pk−1χ(p)λpr−2 , r ≥ 2,

then the same argument as in Corollary 10.1 implies the first assertion. Fur-
thermore, if f is normaized eigenform: a1(f) = 1, then λn = an(f).

Conversely, the Euler product 6 implies

(1) amn(f) = am(f)an(f) when (m,n) = 1,

(2) apr(f) = ap(f)apr−1(f)−χ(p)pk−1ap
r−2

(f) for all primes p and r ≥ 2.

We note that, for f to be an eigenfoem it need to satisfy am(Tpf) = ap(f)am(f)
for all prime p and m ∈ Z+. If p ∤ m then formula 2 gives am(Tpf) =
apm(f) = ap(f)am(f). On the other hand, if p | m write m = prm′, with
r ≥ 1 and p ∤ m′. Then

am(Tpf) = apr+1m′(f) + χ(p)pk−1apr−1m′(f) formula 2

= (apr+1(f) + χ(p)pk−1apr−1(f))am′(f) condition (2)

= ap(f)apr(f)am′(f) condition (1)

= ap(f)am(f) condition (2).

■
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Remark. For a normalized eigenform f ∈ Sk(N,χ), it is clear from the ar-
gument in the above proof that the Dirichlet series associated to f has an
Euler product:

∞∑
n=1

an(f)n
−s =

∏
p

(1− ap(f)p
−s + χ(p)pk−1−2s)−1.

We deal with the convergence properties in the next section.

2.2. Ramanujan τ-function. In his fundamental paper of 1916, Ramanu-
jan introduced the τ -function as being the coefficients in the power series
expansion of the infinite product

q
∞∏
n=1

(1− qn)24 =

∞∑
n=1

τ(n)qn.

He made three conjectures regarding τ(n):

(1) τ(mn) = τ(m)τ(n) for (m,n) = 1,

(2) if p is prime, then τ(pα+1) = τ(p)τ(pα)− p11τ(pα−1) for α ≥ 1;

(3) if p is prime, then |τ(p)| ≤ 2p11/2.

It is well known that q
∏∞
n=1(1 − qn)24 is a cusp form of weight 12 for the

full modular group SL2(Z) for q = e2πiz and z ∈ H, denoted by ∆. Since
S12 = S12(Γ1(1)) is of dimension 1, ∆ ∈ S12 is automatically an eigenform.
It is also clear that ∆ is normalised. Thus

∞∑
n=1

τ(n)n−s =
∏
p

1

1− τ(p)p−s + p11−2s
.

Since, ∆ is normalised Tn(∆) = τ(n)∆. Thus the first two conjectures of
Ramanujan follows from 10. The third conjecture of Ramanujan was proved
by Deligne using extensive tools from algebraic geometry. He proved more
generally that if f ∈ Sk(N,χ) is primitive, then |ap(f)| ≤ 2pk−1 (a particular
but highly important case of the famous Ramanujan-Petersson conjecture).
We cannot say anything about the proof in this text, except that it relies
heavily on very difficult algebraic geometry.

2.3. Basis of cusp forms. We shall now focus on Sk(Γ1), and introduce
an inner product in the space Sk(Γ1). Define the hyperbolic measure on the
upper half plane,

dµ(z) =
dxdy

y2
, z = x+ iy ∈ H.

Let f, g ∈ Sk(Γ1), we define

⟨f, g⟩ =
∫
Γ1(N)\H

f(z)g(z) · yk−2dxdy, z = x+ iy ∈ H.
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Here f(z)g(z) · yk and y−2dxdy are invariant under Γ1(N), therefore, the
integral is well-defined if it converges. It also converges (page 74 in [4]).
The inner product ⟨f, g⟩ is of course hermitian and positive definite; it is
called the Petersson inner product on Sk(Γ1(N)). The following proposi-
tion determines the adjoint of the Hecke operators with respect to the inner
product.

Proposition 13. Let f, g ∈ Sk(Γ1(N)), and (n,N) = 1. Then

(1) ⟨⟨n⟩f, g⟩ = ⟨f, ⟨n−1⟩g⟩,

(2) ⟨Tn(f), g⟩ = ⟨f, ⟨n−1⟩Tn(g)⟩.

In particular, if f, g ∈ Sk(N,χ), then ⟨Tn(f), g⟩ = χ(n)⟨f, Tn(g)⟩.

Proof. Proposition 5.5.2 in [1]. ■

Proposition 14 (Commutativity of Hecke operators). Let d, e ∈ (Z/NZ)×
and n,m ∈ Z+ then

(1) ⟨d⟩Tn = Tn⟨d⟩,

(2) ⟨d⟩⟨e⟩ = ⟨e⟩⟨d⟩ = ⟨de⟩,

(3) TnTm = TmTn.

Proof. We have already seen (1). Since ⟨d⟩ and Tn preserves the decomposi-
tion Mk(Γ1(N)) =

⊕
χMk(N,χ), so it suffices to check (2) and (3) on any

arbitrary f ∈ Mk(N,χ). It is immediate to see that (2) holds, and (3) holds
because of Proposition 10. ■

Definition 5. A normal operator on a complex inner product space V is a
linear operator T : V → V that commutes with its Hermitian adjoint T ∗,
that is: TT ∗ = T ∗T .

As a consequence of Proposition 13 and 14 we get the following:

Corollary 14.1. The Hecke operators ⟨n⟩ and Tn for n relatively prime to
N are normal.

Theorem 15 (Spectral Theorem). If there is a set of normal operators on
a finite-dimensional inner product space that commute with each other, then
the space possesses a set of orthogonal basis vectors that are eigenvectors for
all the operators simultaneously.

In our context of modular forms, we refer to these eigenvectors as eigenforms.
This leads to the following conclusion:



14 SANYAM GUPTA

Corollary 15.1. The space Sk(Γ1(N)) has an orthogonal basis of simulta-
neous eigenforms for the Hecke operators {⟨n⟩, Tn : (n,N) = 1}.

Proof. Proposition 14, Corollary 14.1, and Theorem 15 imply the assertion.
■

3. L-functions associated to Modular forms

We begin this section with two rudimentary lemmas about the cusp-forms
of level Γ1(N).

Lemma 16. Suppose f ∈ Sk(T1(N)), then∣∣f(x+ iy)
∣∣ ≤My−k/2

where M is a constant independent of x. Conversely, if f ∈ Mk(T1(N))

and
∣∣f(x+ iy)

∣∣ ≤ My−k/2 with a constant M independent of x, then f ∈
Sk(T1(N)).

Proof. Firstly, we observe that the function

h(z) = h(x+ iy) =
∣∣f(x+ iy)

∣∣y k
2

on H is invariant under Γ1(N): h(γz) = h(z) for γ ∈ Γ1(N). Let s be a cusp
of Γ1(N). Let ρ ∈ SL2(Z) such that ρ(s) = ∞. Let Γ1(N)s = {γ ∈ Γ1(N) :
γ(s) = s} be the stabilizer of s, then

Γ1(N)∞ = ρΓ1(N)sρ
−1.

Since z 7→ z + 1 ∈ Γ1(N)∞, f [ρ−1]k is invariant under z 7→ z + 1. Thus,
there exists meromorphic function Φ(q) in the domain 0 < |q| < r, with a
positive real number r, such that if q = e2πiz, then

f [ρ−1]k(z) = Φ(e2πiz).

Since f ∈ Sk(T1(N)), we have∣∣∣f [ρ−1]k(z)
∣∣∣ = ∣∣Φ(q)∣∣ = O(q) = O(e−2πy).

It is easy to see that, h(ρ−1(z)) = Φ(q) Im(z)k/2, thus h(ρ−1(z)) = O(yk/2e−2πy)
and so h(w) → 0 as w → s. Thus h can be viewed as a continuous functions
on Γ1(N)\H∗. Since, Γ1(N)\H∗ is compact, h(z) is bounded. Which implies
the first assertion. Coversely, if h(z) is bounded, ■

Theorem 17 (Hecke). If f ∈ Sk(T1(N)) has Fourier expansion given by

f(z) =

∞∑
n=1

an(f)q
n

at ∞, then an(f) = O(n
k
2 ), where the implicit constant is independent of n.
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Proof. There is a constant M such that

yk/2
∣∣f(z)∣∣ ≤M, ∀z ∈ H.

Now fix y and vary x between 0 and 1. Then q = e2πi(x+iy) traverses coun-
terclockwise the circle Cy of radius e−2πy, centered at zero. By Cauchy’s
residue theorem,

af (n) =
1

2πi

∫
Cy

f(z)q−n−1dq =

∫ 1

0
f(x+ iy)q−ndx.

Thus, we obtain
|af (n)| ≤My−k/2e−2πny

for any y > 0. Choosing y = 1/n gives af (n) = O(nk/2). ■

3.1. Twisted L-functions.

Definition 6. Let f =
∑∞

n=1 an(f)q
n ∈ Sk(N,ψ), let χ be a Dirichlet

chracter modulo r, where r is a positive integer relatively prime to N . Define

Lf (s, χ) =

∞∑
n=1

an(f)χ(n)

ns
.

Let Lf (s) =
∑∞

n=1
an(f)
ns , then Lf (s, χ) is called the twist of Lf (s) by χ.

In this section, we consider such twists of Lf (s). Firstly, we recall some
elementary facts on the Gauss sum associated to χ. Let us fix a r to be a
positive integer, and χ be a primitive Dirichlet character modulo r, then the
associated Gauss sum is

τ(χ) =
r∑

m=1

χ(m)e(m/r), e(m/r) = e2πi(m/r).

Lemma 18. The notation being as above, we have:

(1)
∑r

m=1 χ(m)e(mn/r) = χ(n)τ(
chi) for every n ∈ Z.

(2) τ(χ)τ(χ) = χ(−1)r.

(3)
∣∣τ(χ)∣∣2 = r.

(4) τ(χ) = χ(−1)τ(χ).

Proof. See Lemma 3.63. in [4]. ■

We also recall the definition of the Gamma function, which is denoted by

Γ(s) =

∫ ∞

0
e−xxs−1dx, (s ∈ C).
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By change of variables: x↔ ax, we get

a−sΓ(s) =

∫ ∞

0
e−axxs−1dx, (s ∈ C, a ∈ R, a > 0).

3.2. Analytic continuation and Functional equations.

Proposition 19. Let N and r be positive integers, s be a positive divisor
of N , and M be the least common multiple of N , r2, and rs. Let χ (resp.
ψ) be a primitve Dirichlet character modulo r (resp. s). Further, let f =∑∞

n=0 an(f)q
n ∈ Mk(N,ψ). Then the “twisted series"

fχ(z) =

∞∑
n=0

χ(n)an(f)q
n

is an element of Mk(M,ψχ2). Moreover, if f is a cusp form, then so is fχ.

Proof. Let τ(χ) be the Gauss sum

τ(χ) =
r∑

m=1

ψ(m)e(m/r).

Also,

τ(χ)χ(n) =
r∑

m=1

r∑
m=1

χ(m)e(mn/r).

Thus we can write fχ in terms of f as

τ(χ)fχ =

r∑
m=1

χ(m)f

[(
1 m

r
0 1

)]
k

.

A direct calculation shows that

α : =

(
1 m/r
0 1

)(
a b
c d

)(
1 −d2m/r
0 1

)
=

(
a+mc/r b− bcdm/r − cd2m2/r2

c d− cd2u/r

)

so that if γ =

(
a b
c d

)
∈ Γ0(M), then α ∈ Γ0(M) also, because M is the

least common multiple of N , r2, rs, and M | c, hence r2 | c. Also

α ≡
(
a ⋆
0 d

)
(mod s).
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Thus,

τ(χ)fχ[γ]k =

r∑
m=1

χ(m)f

[(
1 m

r
0 1

)(
a b
c d

)]

=
r∑

m=1

χ(m)f

α(1 d2m
r

0 1

)
=

r∑
m=1

χ(m)ψ(d′)f

(1 d2m
r

0 1

) ,
where d′ is the lower right entry of α, and d′ ≡ d (mod s). As (d, r) = 1, we
see that d2m (mod r) forms a complete set of residue classes modulo r as m
ranges over all residue classes modulo r. Thus,

τ(χ)fχ[γ]k = χ(d)2ψ(d)

r∑
m=1

χ(m)f

[(
1 m

r
0 1

)]
= χ(d)2ψ(d)τ(χ)fχ.

Since τ(χ) ̸= 0, we deduce that fχ ∈ Mk(M,ψχ2) as claimed. ■

For x ∈ Z, let

wx =

(
0 −1
x 0

)
.

Lemma 20. If f ∈ Sk(Γ1(N)), then f [wN ]k ∈ Sk(Γ1(N)). Moreover, if
f ∈ Sk(N,χ), then f [wN ]k ∈ Sk(N,χ).

Proof. We first observe that wNΓi(N)w−1
N ⊂ Γ0(N). If γ =

(
a b
c d

)
∈

Γ1(N), then

f([wN ]k)[γ]k =

f [( d −c/N
−bN a

)]
k

 [wN ]k = f [wN ]k.

Now suppose that f ∈ Sk(N,χ)

■

Lemma 21. Let (q, r) = 1 and (u, r) = 1. Let d and w be the integers such
that dr − quw = 1, and N = qr2. Then(

1 u
r

0 1

)
wN = rwq

(
r −w

−qu d

)(
1 w

r
0 1

)
.
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Proof. This is immediate by comparing both sides. ■

Proposition 22. Keeping the notation from the above proposition, suppose
that r is prime to N . Let g = f [wN ]k. Then

fχ[wr2N ]k = w(χ)gχ,

where
w(χ) = ψ(r)χ(N)τ(χ)2/r.

Proof. Let m be a positve integer such that (m, r) = 1. Then we can find
two integrs d and w so that dr − Nmw = 1. Then from the above lemma
we have: (

1 m
r

0 1

)
wr2N = rwN

(
r −w

−Nu d

)(
1 w

r
0 1

)
.

so that

f

[(
1 m

r
0 1

)
wr2N

]
k

= ψ(d)g

[(
1 w

r
0 1

)]
k

= ψ(r)g

[(
1 w

r
0 1

)]
k

.

We also have

τ(χ)fχ[wr2N ]k =
r∑

m=1

χ(m)f

[(
1 m

r
0 1

)
wr2N

]
k

=
r∑

m=1

χ(m)ψ(r)g

[(
1 w

r
0 1

)]
k

Asm ranges over coprime residue classes modulo r, so does w. Since Nmw ≡
−1 (mod r), we have χ(Nmw) = χ(−1)) so that χ(m) = χ(−N)χ(w). Thus

τ(χ)fχ[wr2N ]k = χ(−N)ψ(r)
r∑

w=1

χ(w)g

[(
1 w

r
0 1

)]
k

= χ(−N)ψ(r)τ(χ)gχ.

From Lemma 18(4) we have that

τ(ψ) = ψ(−1)τ(ψ).

We obtain
τ(χ)fχ[wr2N ]k = χ(N)ψ(r)τ(χ)gχ

so that
rfχ[wr2N ]k = χ(N)ψ(r)τ(χ)2gχ

which is the desired result. ■
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Let ψ be an arbitrary Dirichlet character modulo N , given

f =
∞∑
n=1

an(f)q
n ∈ Sk(N,ψ)

and a primitive Dirichlet character χ modulo r, where r is coprime to N ,
then we can associate the “twisted” L-series to f :

Lf (s, χ) =
∞∑
n=1

an(f)χ(n)

ns

where an(f) are the Fourier coefficients of f at ∞. Furthermore, define the
completed twisted L-function of f as:

Λf (s, χ) =

(√
r2N

2π

)s
Γ(s)Lf (s, χ).

Then we have the following functional equation for Lf (s, χ)

Theorem 23. Keeping the notation as above and f ∈ Sk((N), ψ). Then
Lf (s, χ) is absolutely convergent for Re(s) > 1 + (k/2), and can be holo-
morphicaly continued to the whole complex plane. Furthermore, Λf (s, χ) is
an entire function, bounded in vertical strips and satisfying the functional
equation

Λf (s, χ) = ikw(χ)Λg(k − s, χ),

where
w(χ) = ψ(r)χ(N)τ(χ)2/r

and g = f [wN ]k, with wN =

(
0 −1
N 0

)
.

Proof. The absolute convergence for Re(s) > k/2 + 1 follows from Theorem
17. Now suppose that the second assertion of theorem is true for r = 1 and
χ = 1. Then from propsitions 19 and 22 we have that fχ ∈ Sk(r2N,ψχ2)
and

Λfχ(s, 1) = Λf (s, χ),

Λfχ[wr2N ](k − s, 1) = ψ(r)χ(N)τ(χ)2r−1Λg(k − s, χ).

Furthermore, from the case of r = 1 and χ = 1, we have the following

Λfχ(s, 1) = ikΛfχ[wr2N ](k − s, 1).

Thus

Λf (s, χ) = ikψ(r)χ(N)τ(χ)2r−1Λg(k − s, χ) = ikw(χ)Λg(k − s, χ).

It remains to prove the theorem for r = 1 and χ = 1. We need the following
lemma. ■
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We can view the completed L-function Λf (s, 1) as Mellin transform of f in
the following sense.

Lemma 24 (Mellin Transformation). Keeping the same notations. For
Re(s) > k/2 + 1 we have the following equalities:

Λf (s, 1) = N
s
2

∫ ∞

0
f(iy)ys−1dy

Λg(s, 1) = N
s
2

∫ ∞

0
g(iy)ys−1dy,

where g = f [wN ]k.

Proof. It suffices to show the first equality. Formally we have

(7)
∫ ∞

0
f(iy)ys−1dy =

∞∑
n=1

an

∫ ∞

0
e−2πnyys−1dy = (2π)−sΓ(s)Lf (s, 1).

We need to check the validity of this equation by checking the convergence
on both sides. For any ε > 0 (small enough) then from Lemma 16 we have∣∣∣∣∫ ε

0
f(iy)ys−1dy

∣∣∣∣ ≤M

∫ ε

0
y−k/2yk/2dy → 0 (ε→ 0)

if Re(s) > k/2 + 1.

Further for any E > 0 we have∣∣∣∣∫ ∞

E
f(iy)ys−1dy

∣∣∣∣ ≤M ′
∫ ∞

E
e−2πyyRe(s)−1dy → 0 (E → ∞)

for any s ∈ C.

For the remaining part of the integral we have∫ E

ε
f(iy)ys−1dy =

∞∑
n=1

an

∫ E

ε
e−2πnyys−1dy

since
∑∞

n=1 ane
−2πny is uniformy convergent for y ≥ ε. Now for any δ > 0

we choose M large enough so that the following is satisified∣∣∣∣∣∣
∑
n>M

an

∫ E

ε
e−2πnyys−1dy

∣∣∣∣∣∣ ≤
∑
n>M

|an|
∫ E

ε
e−2πnyyRe(s)−1dy

= Γ(σ)(2π)−Re(s)
∑
n>M

|an|n−Re(s) < δ.
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From which it follows that∣∣∣∣∣∣
∫ ∞

0
f(iy)ys−1dy −

M∑
n=1

an

∫ ∞

0
e−2πnyys−1dy

∣∣∣∣∣∣
= lim

ε→0
E→∞

∣∣∣∣∣∣
∫ E

ε
f(iy)ys−1dy −

M∑
n=1

an

∫ E

ε
e−2πnyys−1dy

∣∣∣∣∣∣ ≤ δ.

This shows that equation 7 is valid for Re(s) > k/2 + 1. Same reasoning
gives the second equality. ■

Proof of Theorem 23. We continue the proof. Let A = N− 1
2 . Then∫ ∞

0
f(iy)ys−1dy =

∫ A

0
f(iy)ys−1dy +

∫ ∞

A
f(iy)ys−1dy

where the first integral converges for Re(s) > k/2+1, and the second integral
converges for every s. By change of variables y ↔ 1/ny, we obtain∫ A

0
f(iy)ys−1dy =

∫ ∞

A
f(i/Ny)N−sy−s−1dy = ikNk/2−s

∫ ∞

A
g(iy)yk−1−sdy

the last equality is because f(i/Ny) = Nk/2(iy)kg(iy), and the last integral
is convergent for any s. Similarly∫ ∞

A
f(iy)ys−1dy = ikNk/2−s

∫ A

0
g(iy)yk−1−sdy (Re(s) > k/2 + 1).

Therefore, we see that

Λf (s, 1) = N
s
2 (2π)−sΓ(s)Lf (s, 1) = N

s
2

∫ ∞

0
f(iy)ys−1dy

can be holomorphically continued to the whole complex plane and we have
the following functional equation

Λf (s, 1) = ikΛg(k − s, 1)

which proves the case r = 1 and χ = 1 and thus completes the proof of the
theorem. ■

The arguments presented above indicates a close connection between Dirich-
let series with a functional equation and modular forms. In particular, we
obtained Dirichlet series with a functional equation from cusp forms. So the
questiona naturally arises: Can one go the other way? Does every Dirichlet
series with the right type of functional equation come from some modular
form, i.e., is it of the form Lf (s, χ) for some modular form f ∈ (M)k(N,χ)
and Dirichlet character χ modulo N . Hecke [1936] and Weil [1967] shoed
that the answer to these questions is yes, but with some qualifications, for
more details we refer to [3].
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